Liver Zonation
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
How does the architectural heterogeneity of the liver with its array of peri-central zones lead to the metabolic zonation across the liver lobule?
Introduction
Liver micro-architecture is set by an array of central veins interspersed with portal triads. Hepatocytes between these landmarks show a position-dependent or zonated metabolism, both in mice and human. Mutual interactions of Wnt and Hh signaling pathways self-organize gradients of ligand concentration that instruct hepatocyte zonation, see Fig. 1. The peri-central (pc) tissue acts as a source of Wnt ligands which registers the ligand gradients with the array of central veins. These spatio-temporal processes are modeled using coupled partial differential equations.
: [**Kolbe _et al._**](#reference)).](/media/model/m6749/Kolbe2019_GraphicalAbstract_huf6e683c64c515fdbf4205e448300dd1a_161546_2c532317f5699b9547ee8abc2a5caebd.jpg)
Description
The model considers a 2D cross-section of 7 liver lobules. The positions of 7 central veins (red dots in Video 1) in a hexagonal arrangement are given by an analytical expression. Five partial differential equations for w=Wnt ligands (green), b=Intracellular Wnt signal (orange), i=IHH (purple), h=SHH (red) and g=GLI3 (brown) determine the time course (video) of dynamic liver zonation, starting from an artificial uniform distribution.
The original model Liver_zonation_model_wnt_hh.xml
had used the partial differential equations as described above. But to visualize the two intracellular signals together with cell turnover of hepatocytes, that model has here been extended by a CPM in Liver_zonation_model_Wnt_Hh_main.xml
.
Results
The final state of this spatio-temporal simulation reproduces the control condition in Fig. 5B of the publication Kolbe et al., 2019, see Fig. 2.
 ([CC BY 4.0](https://creativecommons.org/licenses/by/4.0/): [**Kolbe _et al._**](#reference))](/media/model/m6749/Kolbe2019_Fig5B_hu8f245fc3019dd409b7f361dceb1a07b9_363372_5df098d8ecae4312104073a88ad77848.png)
The full spatio-temporal dynamics are shown in the videos Video 1, for the original model Liver_zonation_model_wnt_hh.xml
, and Video 2, for the extended model Liver_zonation_model_Wnt_Hh_main.xml
.
Liver_zonation_model_wnt_hh.xml
.
Liver_zonation_model_Wnt_Hh_main.xml
.
Reference
This model is the original used in the publication, up to technical updates:
E. Kolbe, S. Aleithe, C. Rennert, L. Spormann, F. Ott, D. Meierhofer, R. Gajowski, C. Stöpel, S. Hoehme, M. Kücken, L. Brusch, M. Seifert, W. von Schoenfels, C. Schafmayer, M. Brosch, U. Hofmann, G. Damm, D. Seehofer, J. Hampe, R. Gebhardt, M. Matz-Soja: Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human. Cell Rep. 29: 4553–4567, 2019.
Model
Liver_zonation_model_Wnt_Hh_main.xml
XML Preview
<?xml version='1.0' encoding='UTF-8'?>
<MorpheusModel version="4">
<Description>
<Details>Model ID: https://identifiers.org/morpheus/M6749
Software: Morpheus (open-source). Download from https://morpheus.gitlab.io
File type: Main model
Full title: Liver Zonation
Authors: E. Kolbe, S. Aleithe, C. Rennert, L. Spormann, F. Ott, D. Meierhofer, R. Gajowski, C. Stöpel, S. Hoehme, M. Kücken, L. Brusch, M. Seifert, W. von Schoenfels, C. Schafmayer, M. Brosch, U. Hofmann, G. Damm, D. Seehofer, J. Hampe, R. Gebhardt, M. Matz-Soja
Submitters: M. Kücken, M. Seifert, L. Brusch
Curators: D. Jahn
Date: 24.12.2019
Units: [time] = N/A
[space] = N/A
Reference: This model is an extension of the original used in the publication:
E. Kolbe, S. Aleithe, C. Rennert, L. Spormann, F. Ott, D. Meierhofer, R. Gajowski, C. Stöpel, S. Hoehme, M. Kücken, L. Brusch, M. Seifert, W. von Schoenfels, C. Schafmayer, M. Brosch, U. Hofmann, G. Damm, D. Seehofer, J. Hampe, R. Gebhardt, M. Matz-Soja. Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human. Cell Reports 29, 4553, 2019.
https://doi.org/10.1016/j.celrep.2019.11.104
Comment: To visualize the intracellular signals together with cell turnover, the published model has here been extended by a CPM.
</Details>
<Title>M6749 Liver Zonation (main)</Title>
</Description>
<Space>
<Lattice class="square">
<Neighborhood>
<Order>2</Order>
</Neighborhood>
<Size symbol="size" value="256,256, 0"/>
<NodeLength value="0.1"/>
<BoundaryConditions>
<Condition type="periodic" boundary="x"/>
<Condition type="periodic" boundary="-x"/>
<Condition type="periodic" boundary="y"/>
<Condition type="periodic" boundary="-y"/>
</BoundaryConditions>
</Lattice>
<SpaceSymbol symbol="s"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="100"/>
<TimeSymbol symbol="t"/>
</Time>
<Global>
<Field symbol="cvein" name="peri-central (pc) Wnt source" value="if((s.x-128)*(s.x-128)+(s.y-128)*(s.y-128)<=25, 1, 0) + if((s.x-28)*(s.x-28)+(s.y-128)*(s.y-128)<=25, 1, 0) + if((s.x-228)*(s.x-228)+(s.y-128)*(s.y-128)<=25, 1, 0) + if((s.x-78)*(s.x-78)+(s.y-215)*(s.y-215)<=25, 1, 0) + if((s.x-78)*(s.x-78)+(s.y-41)*(s.y-41)<=25, 1, 0) + if((s.x-178)*(s.x-178)+(s.y-215)*(s.y-215)<=25, 1, 0) + if((s.x-178)*(s.x-178)+(s.y-41)*(s.y-41)<=25, 1, 0)"/>
<Field symbol="w" name="Wnt ligands (w)" value="0.0">
<Diffusion rate="1.0"/>
</Field>
<Field symbol="b" name="Intracellular Wnt signal (b)" value="0.01">
<Diffusion rate="0.001"/>
</Field>
<Field symbol="i" name="IHH (i)" value="0.001"/>
<Field symbol="h" name="SHH (h)" value="0.01">
<Diffusion rate="0.5"/>
</Field>
<Field symbol="g" name="GLI3 (g)" value="0.01">
<Diffusion rate="1.0"/>
</Field>
<Constant symbol="a" value="0.2"/>
<Constant symbol="c" value="1.0"/>
<Constant symbol="k2" value="12.0"/>
<Constant symbol="k1" value="0.1"/>
<Constant symbol="k3" value="0.2"/>
<Constant symbol="k4" value="12.0"/>
<Constant symbol="k5" value="1.0"/>
<Constant symbol="k6" value="0.5"/>
<Constant symbol="k7" value="2.0"/>
<Constant symbol="k8" value="1.0"/>
<System time-step="0.1" solver="Runge-Kutta [fixed, O(4)]">
<DiffEqn symbol-ref="w">
<Expression>0.001-k1*w + cvein</Expression>
</DiffEqn>
<DiffEqn symbol-ref="b">
<Expression>b*(w-a)*(1/(1+k2*h)-b) </Expression>
</DiffEqn>
<DiffEqn symbol-ref="h">
<Expression>k3*c-k4*w*h-h</Expression>
</DiffEqn>
<DiffEqn symbol-ref="i">
<Expression>b*c*c-k5*i</Expression>
</DiffEqn>
<DiffEqn symbol-ref="g">
<Expression>k6*i+k7*h-k8*g</Expression>
</DiffEqn>
</System>
</Global>
<Analysis>
<Gnuplotter log-commands="false" time-step="1" decorate="true">
<Terminal name="png"/>
<Plot>
<Field symbol-ref="cvein"/>
</Plot>
<Plot>
<Field symbol-ref="w" max="0.3" min="0">
<ColorMap>
<Color value="1" color="green"/>
<Color value="0" color="white"/>
</ColorMap>
</Field>
</Plot>
<Plot>
<Cells flooding="true" max="0.3" min="0" value="bCatenin">
<ColorMap>
<Color value="0.3" color="orange"/>
<Color value="0" color="white"/>
</ColorMap>
</Cells>
</Plot>
<Plot>
<Field symbol-ref="i" max="0.3" min="0">
<ColorMap>
<Color value="0.3" color="violet"/>
<Color value="0" color="white"/>
</ColorMap>
</Field>
</Plot>
<Plot>
<Field symbol-ref="h" max="0.2" min="0">
<ColorMap>
<Color value="0.2" color="red"/>
<Color value="0" color="white"/>
</ColorMap>
</Field>
</Plot>
<Plot>
<Cells flooding="true" max="0.3" min="0" value="Gli3">
<ColorMap>
<Color value="0.3" color="brown4"/>
<Color value="0" color="white"/>
</ColorMap>
</Cells>
</Plot>
</Gnuplotter>
<ModelGraph format="svg" reduced="false" include-tags="#untagged"/>
</Analysis>
<CellTypes>
<CellType class="biological" name="hepatocyte">
<VolumeConstraint target="100" strength="1"/>
<SurfaceConstraint target="1" strength="1" mode="aspherity"/>
<CellDeath>
<Condition>rand_uni(0,1) < 0.001</Condition>
</CellDeath>
<CellDivision division-plane="major">
<Condition>rand_uni(0,1) < 0.001</Condition>
</CellDivision>
<Property symbol="bCatenin" name="Intracellular Wnt signal (b)" value="0.0"/>
<Property symbol="Gli3" name="GLI3 (g)" value="0.0"/>
<Mapper time-step="1.0" name="bCatenin">
<Input value="b"/>
<Output symbol-ref="bCatenin" mapping="average"/>
</Mapper>
<Mapper time-step="1.0" name="Gli3">
<Input value="g"/>
<Output symbol-ref="Gli3" mapping="average"/>
</Mapper>
</CellType>
</CellTypes>
<CellPopulations>
<Population type="hepatocyte" size="10">
<!-- <Disabled>
<InitHexLattice randomness="1"/>
</Disabled>
-->
<InitRectangle random-offset="1" number-of-cells="1000" mode="random">
<Dimensions origin="0.0, 0.0, 0.0" size="size.x, size.y, 1.0"/>
</InitRectangle>
<InitVoronoi/>
</Population>
</CellPopulations>
<CPM>
<Interaction/>
<ShapeSurface scaling="norm">
<Neighborhood>
<Order>2</Order>
</Neighborhood>
</ShapeSurface>
<MonteCarloSampler stepper="edgelist">
<MCSDuration value="1"/>
<MetropolisKinetics temperature="1"/>
<Neighborhood>
<Order>2</Order>
</Neighborhood>
</MonteCarloSampler>
</CPM>
</MorpheusModel>
Downloads
Files associated with this model: