Simplified Actin Waves in Eukaryotic Cell Motility

Persistent Identifier

Use this permanent link to cite or share this Morpheus model:

Spatial relaxation oscillator produces spatial dynamics and spiral waves, simplification of a previous model for actin waves

Introduction

Motivated by alternative cell motility modes in eukaryotic cells like Dictyostelium discoideum, we consider a simplified version of an intracellular model for an F-actin negative feedback to an (active/inactive) GTPase system. The equations were analysed by full PDE bifurcation analysis in Hughes et al., 2024.

Description

This model is related to a previous model on actin waves.

Equations: for the active ($u$), inactive ($v$) GTPase, respectively, and F-actin ($F$).

$$\begin{align} \frac{\partial u}{\partial t} &= (b+\gamma u^2)v - (1+sF+u^2)u + D \Delta u \\ \frac{\partial v}{\partial t} &= -(b+\gamma u^2)v + (1+sF+u^2)u + \Delta v \\ \frac{\partial F}{\partial t} &= \epsilon (p_0+p_1 u - F) + D_F \Delta F \end{align}$$

The domain is periodic, of (side) length $L$, in 1D and 2D.

The parameters and initial conditions are given in the following table.

Polar 1D Traveling Waves 1D Spiral Waves
Params. $b$ $0.067$ $0.067$ $1.5$
$\gamma$ $3.55$ $3$ $30$
$s$ $0.41$ $1$ $10$
$\epsilon$ $0.6$ $0.6$ $0.6$
$p_0$ $0.8$ $0.8$ $0.8$
$p_1$ $3.8$ $3.8$ $3.8$
$D$ $0.1$ $0.1$ $0.1$
$D_F$ $0.001$ $0.001$ $0.001$
$M$ $2$ $4.5$ $3$
$L$ $2\pi$ $pi$ $10$
Initial
conditions
$\begin{align}\scriptsize u(x, 0) \ &\scriptsize= 1 - 0.5 \cos(x)\\ \scriptsize v(x, 0) \ &\scriptsize= 1 - 0.1 \cos(x)\\ \scriptsize F(x, 0) \ &\scriptsize= 4.5 - 0.82 \cos(x)\end{align}$ $\begin{align}\scriptsize u(x, 0) \ &\scriptsize= 1 - 0.5 \cos(x) - 0.6 \sin(x)\\ \scriptsize v(x, 0) \ &\scriptsize= 1 - 0.1 \sin(x)\\ \scriptsize F(x, 0) \ &\scriptsize= 4.5 - 0.82 \cos(x)\end{align}$ $\begin{align}\scriptsize u(x, 0) \ &\scriptsize= 0.5\\ \scriptsize v(x, 0) \ &\scriptsize= M - 0.5 \scriptsize= 2.5\\ \scriptsize F(x, 0) \ &\scriptsize= 4.5 + \chi\end{align}$
Model
file
ActinWavesPDE
1DPolar_main.xml
ActinWavesPDE
1DTW.xml
ActinWavesPDE
2DSpiral.xml
Table 1: Parameters and initial conditions. Where, for the spiral waves, $\chi = 0.7(0.5 − \sigma)$ for $\sigma$ a normally distributed random number between $[−0.5, 0.5]$, which is adding noise to the initial condition.

Results

One-dimensional analysis

In 1D spatial coordinates we obtain either a polar distribution or a traveling wave, as shown for the variable $u$ in the two kymographs below. Time evolves (horizontal axis) and space is on the vertical axis.

Kymograph of 1D model simulation shows stationary polarized state
Figure 1: Kymograph of 1D model simulation, with parameters of first column in above table and periodic boundary conditions, shows a stationary polarized state.
Kymograph of 1D model simulation shows traveling wave
Figure 2: Kymograph of 1D model simulation, with parameters of second column in above table and periodic boundary conditions, shows a traveling wave with one active domain.

Two-dimensional analysis

In 2D spatial coordinates, the system can also form dynamic spiral waves as shown in the snapshot and movie below.

Snapshot of 2D model simulation shows spiral waves
Figure 3: Snapshot of 2D model simulation, with parameters of third column in above table and periodic boundary conditions, shows spiral waves.

Reference

This model is the original used in the publication, up to technical updates:

J. Algorta, A. Fele-Paranj, J. M. Hughes, L. Edelstein-Keshet: Modeling and Simulating Single and Collective Cell Motility. Cold Spring Harbour Perspectives in Biology, 2024.

Model

Get this model via:

  • Morpheus-Link or
  •  Download: ActinWavesPDE1DPolar_main.xml
  • XML Preview

    <MorpheusModel version="4">
        <Description>
            <Title>Actin WavesHughesPolar1D</Title>
            <Details>Model ID:	https://identifiers.org/morpheus/M2071
      File type:	Main model
      Software:	Morpheus (open source). Download from: https://morpheus.gitlab.io
    Full title:	Simplified Actin Waves in Eukaryotic Cell Motility – Polar 1D
    Authors:	J. M. Hughes and L. Edelstein-Keshet 
    Submitter:	L. Edelstein-Keshet
    Curator:	D. Jahn
    Date:	29.10.2024
    Reference:	J. Algorta, A. Fele-Paranj, J. M. Hughes, L. Edelstein-Keshet: Modeling and Simulating Single and Collective Cell Motility. Cold Spring Harbour Perspectives in Biology, 2024.
    	This model reproduces the model and results obtained with Morpheus in Figure 1 of the original publication.
    Comment:	PDE model for F-actin negative feedback to GTPases, and GTPase promotion of F-actin.
    	u = active GTPases
    	v = inactive GTPase
    	F = F-actin</Details>
        </Description>
        <!--
     Define the variables and initialize their values.
     Indicate the rates of diffusion
     GTPases diffusem but F-actin does not
    -->
        <Global>
            <Field symbol="u" name="Active GTPase" value="1-0.5* cos(x)">
                <Diffusion rate="0.1/dx/dx"/>
            </Field>
            <Field symbol="v" name="Inactive GTPase" value="1-0.1* cos(x)">
                <Diffusion rate="1/dx/dx"/>
            </Field>
            <Field symbol="F" name="F-actin" value="4.5 + 0.82* cos(x)">
                <Diffusion rate="0.001/dx/dx"/>
            </Field>
            <!--
     Specify the method of solution and give the kinetic terms
     in the differential equations for the three variables
    -->
            <System time-step="0.05" solver="Dormand-Prince [adaptive, O(5)]">
                <DiffEqn symbol-ref="u">
                    <Expression> (b+gamma*u^n)*v- u*(1+s*F+u^2) </Expression>
                </DiffEqn>
                <DiffEqn symbol-ref="v">
                    <Expression> -(b+gamma*u^n)*v+ u*(1+s*F+u^2) </Expression>
                </DiffEqn>
                <DiffEqn symbol-ref="F">
                    <Expression> epsilon*(p0+p1*u-F)</Expression>
                </DiffEqn>
                <!--
      Define the constants and give their values.
    -->
                <Constant symbol="b" name="basal activation rate" value="0.067"/>
                <Constant symbol="gamma" name="autocatalytic activation rate" value="3.55"/>
                <Constant symbol="n" name="Hill coefficient" value="2"/>
                <Constant symbol="p1" name="GTPase dependent F-actin assembly rate" value="3.8"/>
                <Constant symbol="p0" name="F-actin basal growth rate" value="0.8"/>
                <Constant symbol="s" name="actin-dependent GTPase inactivation rate" value="0.41"/>
                <Constant symbol="epsilon" name="actin reaction rate" value="0.6"/>
            </System>
            <Function symbol="x">
                <Expression>dx*space.x</Expression>
            </Function>
            <Constant symbol="dx" value="0.02"/>
        </Global>
        <!--
    Specify the 2D Domain ("Square" lattice) and its boundary conditions
    Indicate the size of each spatial box
    -->
        <Space>
            <Lattice class="linear">
                <Size symbol="size" value="314, 0, 0"/>
                <BoundaryConditions>
                    <Condition type="periodic" boundary="x"/>
                    <!--    <Disabled>
            <Condition type="periodic" boundary="y"/>
        </Disabled>
    -->
                </BoundaryConditions>
                <Neighborhood>
                    <Order>1</Order>
                </Neighborhood>
            </Lattice>
            <SpaceSymbol symbol="space"/>
        </Space>
        <!--
      Set the start and end time and any random seed needed
    -->
        <Time>
            <StartTime value="0"/>
            <StopTime value="100"/>
            <SaveInterval value="0"/>
            <TimeSymbol symbol="time"/>
        </Time>
        <!--
     Specify how the results should be plotted
    -->
        <Analysis>
            <Logger time-step="0.1">
                <Input>
                    <Symbol symbol-ref="u"/>
                    <Symbol symbol-ref="v"/>
                    <Symbol symbol-ref="F"/>
                    <Symbol symbol-ref="x"/>
                </Input>
                <Output>
                    <TextOutput file-format="csv"/>
                </Output>
                <Plots>
                    <Plot time-step="20">
                        <Style point-size="2.0" style="points"/>
                        <Terminal terminal="png"/>
                        <X-axis minimum="0.0" maximum="100">
                            <Symbol symbol-ref="time"/>
                        </X-axis>
                        <Y-axis minimum="0.0" maximum="6.28">
                            <Symbol symbol-ref="x"/>
                        </Y-axis>
                        <Color-bar>
                            <Symbol symbol-ref="u"/>
                        </Color-bar>
                    </Plot>
                </Plots>
            </Logger>
            <ModelGraph format="dot" reduced="false" include-tags="#untagged"/>
        </Analysis>
    </MorpheusModel>
    
    

    Model Graph
    Model Graph

    Downloads

    Files associated with this model:

    Previous