Schnakenberg System
Persistent Identifier
Use this permanent link to cite or share this Morpheus model:
Creating patterns using the Schnakenberg reaction-diffusion system
Introduction
We use the Schnakenberg system to generate patterns using a pair of reaction-diffusion (RD) equations, build up from 1D to 2D and explore parameter dependence.
Description
We run the Schnakenberg system of PDEs in 1D with no-flux BoundaryConditions
from initial profile of noise.
Results


. Bottom: The same RD system but with random noise close to the HSS as initial conditions. A pattern of spots emerges over time, produced with [`Schnakenberg2Db.xml`](#downloads).](/media/model/m2009/SchnakPatternsA_huc3298907a991ee657851c272a589355d_584476_cb779d0a7808770afef5d3ca247dea3e.png)
Schnakenberg2Da.xml
. Bottom: The same RD system but with random noise close to the HSS as initial conditions. A pattern of spots emerges over time, produced with Schnakenberg2Db.xml
.
.](/media/model/m2009/SchnakPatternsVaryGamma_hudbe1c5b1c6cabeb35656df143fa7f870_972745_3edaa3e87008a8bdf2d5f50f6b4a2795.png)
Schnakenberg2Db.xml
.
.](/media/model/m2009/GrowingIrregDomain_hub42d479eac1b6adabf8568bfec9ce7fe_62113_190a49394a268f615a5f437cb7c46a57.png)
noflux
BoundaryCondition
s. Produced with Morpheus file Schnakenberg2Dshape.xml
.
Schnakenberg2Dshape.xml
also requires the separate files picture1.tiff
, picture2.tiff
and picture3.tiff
.
Model
SchnakenbergRD1D_main.xml
XML Preview
<MorpheusModel version="4">
<Description>
<Title>Schnakenberg RD System 1D</Title>
<Details>Full title: Schnakenberg System
Authors: L. Edelstein-Keshet
Contributors: Y. Xiao
Date: 04.06.2022
Software: Morpheus (open-source). Download from https://morpheus.gitlab.io
Model ID: https://identifiers.org/morpheus/M2002
File type: Main model
Reference: L. Edelstein-Keshet: Mathematical Models in Cell Biology
Comment: Patterns formed by the Schnakenberg reaction-diffusion system. u is the activator and v is the inhibitor. gamma sets the time scale of the kinetics relative to the rates of diffusion. Modified from the Morpheus example Example-ActivatorInhibitor-2D (https://identifiers.org/morpheus/M0012).</Details>
</Description>
<Global>
<Field symbol="u" name="activator" value="2+0.5*rand_norm(1,0.5)">
<Diffusion rate="0.01"/>
</Field>
<Field symbol="v" name="inhibitor" value="1.0">
<Diffusion rate="1"/>
</Field>
<Field symbol="v_5" name="5Xinhibitor" value="5">
<Diffusion rate="0"/>
<Annotation>v_5 is defined for plotting purposes, so that v shows up well on the plot of u.</Annotation>
</Field>
<System time-step="0.1" name="Schnakenberg" solver="Runge-Kutta [fixed, O(4)]">
<Constant symbol="gamma" value="0.1"/>
<Constant symbol="a" value="0.2"/>
<Constant symbol="b" value="2.0"/>
<DiffEqn symbol-ref="u">
<Expression>gamma*(a-u+v*(u^2))</Expression>
</DiffEqn>
<DiffEqn symbol-ref="v">
<Expression>gamma*(b-v*(u^2))</Expression>
</DiffEqn>
<Rule symbol-ref="v_5">
<Expression>5*v</Expression>
</Rule>
</System>
</Global>
<Space>
<Lattice class="linear">
<Size symbol="size" value="150, 0, 0"/>
<NodeLength value="0.2"/>
<BoundaryConditions>
<Condition type="noflux" boundary="x"/>
<Condition type="noflux" boundary="-x"/>
</BoundaryConditions>
<Neighborhood>
<Order>1</Order>
</Neighborhood>
</Lattice>
<SpaceSymbol symbol="space"/>
</Space>
<Time>
<StartTime value="0"/>
<StopTime value="500"/>
<SaveInterval value="0"/>
<TimeSymbol symbol="time"/>
</Time>
<Analysis>
<Logger time-step="50">
<Input>
<Symbol symbol-ref="u"/>
</Input>
<Output>
<TextOutput file-format="csv"/>
</Output>
<Plots>
<Plot time-step="50">
<Style line-width="3.0" style="lines"/>
<Terminal terminal="png"/>
<X-axis>
<Symbol symbol-ref="space.x"/>
</X-axis>
<Y-axis minimum="0" maximum="6">
<Symbol symbol-ref="u"/>
<!-- <Disabled>
<Symbol symbol-ref="v_5"/>
</Disabled>
-->
</Y-axis>
<!-- <Disabled>
<Range>
<Disabled>
<Data/>
</Disabled>
<Disabled>
<Time mode="current"/>
</Disabled>
</Range>
</Disabled>
-->
<Color-bar reverse-palette="true">
<Symbol symbol-ref="time"/>
</Color-bar>
</Plot>
</Plots>
</Logger>
<Logger time-step="10">
<Input>
<Symbol symbol-ref="u"/>
</Input>
<Output>
<TextOutput file-format="matrix"/>
</Output>
<Plots>
<SurfacePlot time-step="10">
<Color-bar>
<Symbol symbol-ref="u"/>
</Color-bar>
<Terminal terminal="png"/>
</SurfacePlot>
</Plots>
</Logger>
<ModelGraph format="svg" reduced="false" include-tags="#untagged"/>
</Analysis>
</MorpheusModel>
Downloads
Files associated with this model: