Game of Life: Cellular Automata

Open in Morpheus

Persistent Identifier

Use this permanent link to cite or share this Morpheus model:


This example models probably the best-known classic cellular automaton (CA) model: Conway’s Game of Life. It shows an alternative use of System for synchronous updating of Equations.

Conway´s Game of Life.
Conway´s Game of Life.


In this model, the lattice is filled with cells of size $1$. Each cell counts the number of neighboring cells that are ‘alive’ and acts accordingly. The rules that make up the Game of Life are implemented in a System of Equations in which all Equations are updated synchronously.

Things to try

  • Change the Neighborhood from a Moore (2nd order) to von Neumann (1st order).


Get this model via:

XML Preview

<MorpheusModel version="3">
    <Description>Conway's Game of Life

Classical Cellular Automaton with synchronized updates.


  • If alive, die when less than 2 live neighbors
  • If alive, survive when 2 or 3 live neighbors (no change)
  • If alive, die when more than 3 live neighbors
  • If dead, become alive when exactly 3 live neighbors

<Title>Example-GameOfLife</Title> <Details>Simulates Conway’s cellular automata model "Game of Life" by

  1. summing the states of neighboring cells with NeighborhoodReporter
  2. based on this sum, setting the cell state using a System of (synchronously updated) Rules.</Details> </Description> <Global> <Constant symbol="s" value="0"/> </Global> <Space> <Lattice class="square"> <Size symbol="size" value="50 50 0"/> <BoundaryConditions> <Condition boundary="x" type="periodic"/> <Condition boundary="y" type="periodic"/> </BoundaryConditions> <Neighborhood> <Order>2</Order> </Neighborhood> </Lattice> <SpaceSymbol symbol="space"/> </Space> <Time> <StartTime value="0"/> <StopTime value="500"/> <SaveInterval value="0"/> <TimeSymbol symbol="time"/> </Time> <CellTypes> <CellType class="biological" name="cell"> <Property symbol="s" value="0.0" name="State_Living"/> <Property symbol="sum" value="0.0" name="Sum_Neighbors"/> <System solver="euler" time-step="1.0" name="Rules of life"> <Rule symbol-ref="s"> <Expression>if((s == 1 and sum &lt; 2), 0, if((s == 1 and sum > 3), 0, if((s == 0 and sum == 3), 1, s) ) ) </Expression> </Rule> </System> <NeighborhoodReporter> <Input scaling="cell" value="s"/> <Output symbol-ref="sum" mapping="sum"/> </NeighborhoodReporter> </CellType> </CellTypes> <CellPopulations> <Population size="0" type="cell"> <InitProperty symbol-ref="s"> <Expression>if(rand_uni(0,1) > 0.75, 1, 0)</Expression> </InitProperty> <InitCellLattice/> </Population> </CellPopulations> <Analysis> <Gnuplotter time-step="20" decorate="false"> <Terminal name="png"/> <Plot> <Cells value="s"> <ColorMap> <Color value="1" color="black"/> <Color value="0.0" color="white"/> </ColorMap> </Cells> </Plot> </Gnuplotter> </Analysis> </MorpheusModel>


Files associated with this model: